Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ballistic transport in InGaN-based LEDs: impact on efficiency

Identifieur interne : 003401 ( Main/Repository ); précédent : 003400; suivant : 003402

Ballistic transport in InGaN-based LEDs: impact on efficiency

Auteurs : RBID : Pascal:11-0337767

Descripteurs français

English descriptors

Abstract

Heterojunction light-emitting diodes (LEDs) based on the InGaN/GaN system have improved considerably but still suffer from efficiency degradation at high injection levels which unless overcome would aggravate LED lighting. Although Auger recombination has been proposed as the genesis of the efficiency degradation, it appears that the premise of electron overflow and non-uniform distribution of carriers in the active region being the immediate impediment is gaining popularity. The lack of temperature sensitivity and sizeable impact of the barrier height provided by an electron blocking layer and the electron cooling layer prior to electron injection into the active region suggest that the new concept of hot electrons and ballistic/quasi-ballistic transport be invoked to account for the electron overflow. The electron overflow siphons off the electrons before they can participate in the recombination process. If the electrons are made to remain in the active region e.g. by cooling them prior to injection and/or blocking the overflow by an electron blocking layer, they would have to either recombine, radiatively or nonradiatively (e.g. Shockley-Read-Hall and Auger), or accumulate in the active region. The essence of the proposed overflow model is in good agreement with the experimental electroluminescence data obtained for m-plane and c-plane LEDs with/without electron blocking layers and with/without staircase electron injectors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0337767

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ballistic transport in InGaN-based LEDs: impact on efficiency</title>
<author>
<name sortKey="Ozg R, " uniqKey="Ozg R "> Özg R</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ni, X" uniqKey="Ni X">X. Ni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Okur, S" uniqKey="Okur S">S. Okur</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avrutin, V" uniqKey="Avrutin V">V. Avrutin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matulionis, A" uniqKey="Matulionis A">A. Matulionis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>01108 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morkoc, H" uniqKey="Morkoc H">H. Morkoc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA 23284</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0337767</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0337767 INIST</idno>
<idno type="RBID">Pascal:11-0337767</idno>
<idno type="wicri:Area/Main/Corpus">002C89</idno>
<idno type="wicri:Area/Main/Repository">003401</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active region</term>
<term>Auger recombination</term>
<term>Ballistic transport</term>
<term>Barrier height</term>
<term>Binary compound</term>
<term>Cooling system</term>
<term>Damaging</term>
<term>Electroluminescence</term>
<term>Electron blocking layer</term>
<term>Electron injection</term>
<term>Gallium nitride</term>
<term>Hot electron</term>
<term>Indium nitride</term>
<term>Junction diodes</term>
<term>LED lamps</term>
<term>Light emitting diode</term>
<term>Non uniform distribution</term>
<term>Performance evaluation</term>
<term>Recombination process</term>
<term>Ternary compound</term>
<term>Thermal management (packaging)</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transport balistique</term>
<term>Evaluation performance</term>
<term>Diode jonction</term>
<term>Diode électroluminescente</term>
<term>Endommagement</term>
<term>Lampe LED</term>
<term>Recombinaison Auger</term>
<term>Distribution non uniforme</term>
<term>Région active</term>
<term>Hauteur barrière</term>
<term>Système refroidissement</term>
<term>Injection électron</term>
<term>Electron chaud</term>
<term>Processus recombinaison</term>
<term>Electroluminescence</term>
<term>Composé ternaire</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Composé binaire</term>
<term>Gestion température packaging électronique</term>
<term>4272</term>
<term>InGaN</term>
<term>GaN</term>
<term>Couche de blocage d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heterojunction light-emitting diodes (LEDs) based on the InGaN/GaN system have improved considerably but still suffer from efficiency degradation at high injection levels which unless overcome would aggravate LED lighting. Although Auger recombination has been proposed as the genesis of the efficiency degradation, it appears that the premise of electron overflow and non-uniform distribution of carriers in the active region being the immediate impediment is gaining popularity. The lack of temperature sensitivity and sizeable impact of the barrier height provided by an electron blocking layer and the electron cooling layer prior to electron injection into the active region suggest that the new concept of hot electrons and ballistic/quasi-ballistic transport be invoked to account for the electron overflow. The electron overflow siphons off the electrons before they can participate in the recombination process. If the electrons are made to remain in the active region e.g. by cooling them prior to injection and/or blocking the overflow by an electron blocking layer, they would have to either recombine, radiatively or nonradiatively (e.g. Shockley-Read-Hall and Auger), or accumulate in the active region. The essence of the proposed overflow model is in good agreement with the experimental electroluminescence data obtained for m-plane and c-plane LEDs with/without electron blocking layers and with/without staircase electron injectors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ballistic transport in InGaN-based LEDs: impact on efficiency</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>From heterostructures to nanostructures</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ÖZGÜR (Ü.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NI (X.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LI (X.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEE (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIU (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>OKUR (S.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>AVRUTIN (V.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MATULIONIS (A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MORKOC (H.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BIMBERG (Dieter)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Berlin Technical University</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s2>014022.1-014022.12</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000191849600220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0337767</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Heterojunction light-emitting diodes (LEDs) based on the InGaN/GaN system have improved considerably but still suffer from efficiency degradation at high injection levels which unless overcome would aggravate LED lighting. Although Auger recombination has been proposed as the genesis of the efficiency degradation, it appears that the premise of electron overflow and non-uniform distribution of carriers in the active region being the immediate impediment is gaining popularity. The lack of temperature sensitivity and sizeable impact of the barrier height provided by an electron blocking layer and the electron cooling layer prior to electron injection into the active region suggest that the new concept of hot electrons and ballistic/quasi-ballistic transport be invoked to account for the electron overflow. The electron overflow siphons off the electrons before they can participate in the recombination process. If the electrons are made to remain in the active region e.g. by cooling them prior to injection and/or blocking the overflow by an electron blocking layer, they would have to either recombine, radiatively or nonradiatively (e.g. Shockley-Read-Hall and Auger), or accumulate in the active region. The essence of the proposed overflow model is in good agreement with the experimental electroluminescence data obtained for m-plane and c-plane LEDs with/without electron blocking layers and with/without staircase electron injectors.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F06A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transport balistique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ballistic transport</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transporte balístico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diode jonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Junction diodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Lampe LED</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>LED lamps</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Recombinaison Auger</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Auger recombination</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Recombinación Auger</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Distribution non uniforme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Non uniform distribution</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Distribución no uniforme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Région active</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Active region</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Región activa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Système refroidissement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cooling system</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sistema enfriamiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Injection électron</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electron injection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Inyección electrón</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Electron chaud</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Hot electron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Electrón caliente</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Processus recombinaison</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Recombination process</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Proceso recombinación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Electroluminescence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electroluminescence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Electroluminiscencia</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Gestion température packaging électronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Thermal management (packaging)</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>4272</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Couche de blocage d'électrons</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Electron blocking layer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>234</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003401 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003401 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0337767
   |texte=   Ballistic transport in InGaN-based LEDs: impact on efficiency
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024